

New Project Kick-Off Meeting

Plate-based fuel processing system

R. Dalla Betta

30 October 2001

Project Information

Plate Based Fuel Processing System
Catalytica Energy Systems, Inc.
430 Ferguson Drive
Mountain View, California 94043

Program Manager

Brian Engleman

Business Development

Catalytica Energy Systems, Inc.

430 Ferguson Drive

Mountain View, CA 94043

Phone (650) 940-6391

Fax (650) 965-4345

bde@catalyticaenergy.com

Principal Investigator

Ralph Dalla Betta

Vice President

Catalytica Energy Systems, Inc.

430 Ferguson Drive

Mountain View, CA 94043

Phone (650) 940-6310

Fax (650) 965-4345

rdallabetta@catalyticaenergy.com

Project Information

Project duration: Start October 1, 2001

Completion September 30, 2005

Total estimated funding: \$11,657,730

Subcontractor:

- National Fuel Cell Research Center (NFCRC)
 - Studies to identify performance targets and functional specifications

Technical Goals

Technical Goals:

- Reactor systems for 50 kW(e) fuel processor
 - Innovative reactor designs
 - Close integration between components
 - Catalyst development

- ➤ Reformer < 10 L
- WGS reactor < 20 L</p>
- PrOx reactor < 10 L</p>
- Develop Simulation models for all reactor components
 - Rapid design optimization
 - Define catalyst performance requirements
- Wide load range with fast transient capability
 - Reactor system design capable of fast transients
- Capability of handling EPA Tier 2 gasoline (30 ppm average, 80 ppm maximum sulfur)
- Other DoE Technical Targets

Overview of Technical Concept

Plate based fuel processor system

Innovative reactor systems that optimize performance

Example: Plate based steam reformer reactor

Close integration of

Catalytic oxidation

Provides several major advantages:

- Very compact reactor designs
- Very efficient use of reaction heat

Draws on Catalytica's base in catalytic combustion and fuel processing

- Commercial products operating in the field
- Durability experience
- Manufacturing experience

Technology-continued

Work to date has demonstrated a 1 kW prototype reformer for methane

- At 50 kW(e) would achieve 6 kW/L and 2 kW/kg
- Demonstrated stable performance for 400 hours
- Preliminary demonstration of load transient capability

Work Plan Summary

Phase 1- Conceptual design

- 1. Reformer
 - Catalyst development--sulfur tolerant steam reforming catalyst
 - Reactor design, reactor model, and durability prediction
- 2. Water gas shift
 - Catalyst development--fast start up, non-air sensitive, high activity
 - Reactor design, reactor model, durability prediction
- 3. PrOx reactor
 - Reactor design

Phase 2- Develop and demonstrate 2 KW components

- 1. Design and fab 2 kW components
- 2. Demonstrate required performance of each subsystem
- 3. Demonstrate durability--agreement with predictive model
- 4. Initial design of 50 kW system with control strategy

Phase 3- 50 kW prototype reformer

- 1. Design 50 kW components
- 2. Design integrated processor
- 3. Develop control system

Schedule and Milestones

Year 1--Definition of technical success

- > Reactor process simulations showing target reactor size
- > Catalyst performance meeting required activity and durability

Potential For Technical Collaboration

Areas of interest

- Integration of fuel processor with fuel cells
 - Fuel cell simulation model--
 - Fuel processor system optimization
 - Fuel processor + fuel cell system integration studies
 - Partners interested in integration and performance studies with reactor components
 - Partner for integration and performance studies with full 50 kW fuel processor (later years)
- Fuel processor system integration
 - Processor system design and integration
 - Fuel processor control system

